Physiological properties of the lamina I spinoparabrachial neurons in the rat.

نویسندگان

  • H Bester
  • V Chapman
  • J M Besson
  • J F Bernard
چکیده

Single-unit extracellular recordings of spino-parabrachial (spino-PB) neurons (n = 53) antidromically driven from the contralateral parabrachial (PB) area were performed in the lumbar cord in anesthetized rats. All the spino-PB neurons were located in the lamina I of the dorsal horn. Their axons exhibited conduction velocities between 2.8 and 27.8 m/s, in the thin myelinated fibers range. They had an extremely low spontaneous activity (median = 0. 064 Hz) and a small excitatory receptive field (</=2 toes or pads). They were all activated by both peripheral A (mainly Adelta) and C fibers after intense transcutaneous electrical stimulation. Their discharge always increased in response to noxious natural stimuli of increasing intensities. The great majority (75%) of spino-PB neurons were nociceptive specific, i.e., they were excited only by noxious stimuli. The remaining (25%) still were excited primarily by noxious stimuli but also responded moderately to innocuous stimuli. Almost all spino-PB neurons (92%, 49/53) were activated by both mechanical and heat noxious stimuli. Among them, 35% were in addition moderately activated by noxious cold (thresholds between +20 and -10 degrees C). Only (8%, 4/53) responded exclusively to noxious heat. Spino-PB neurons clearly encoded the intensity of mechanical (n = 39) and thermal (n = 38) stimuli in the noxious range, and most of the individual stimulus-response functions were monotonic and positive up to 40/60 N. cm(-2) and 50 degrees C, respectively. For the mechanical modality, the mean threshold was 11.5 +/- 1.25 N. cm(-2) (mean +/- SE), the response increased almost linearly with the logarithm of the pressure between 10 and 60 N. cm(-2), the mean p(50) (pressure evoking 50% of the maximum response) and the maximum responsiveness were: 30 +/- 2.4 N. cm(-2) and 40.5 +/- 5 Hz, respectively. For the thermal modality, the mean threshold was 43.6 +/- 0.5 degrees C, the mean curve had a general sigmoid aspect, the steepest portion being in the 46-48 degrees C interval, the mean t(50) and the maximum responsiveness were: 47.4 +/- 0.3 degrees C and 40 +/- 4.4 Hz, respectively. Most of the spino-PB neurons tested (13/16) had their noxiously evoked responses clearly inhibited by heterotopic noxious stimuli. The mean response to noxious stimuli during heterotopic stimuli was 31.7 +/- 6.1% of the control response. We conclude that the nociceptive properties of the lamina I spino-PB neurons are reflected largely by those of PB neurons that were suggested to be involved in autonomic and emotional/aversive aspects of pain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitization of lamina I spinoparabrachial neurons parallels heat hyperalgesia in the chronic constriction injury model of neuropathic pain

It has been proposed that spinal lamina I neurons with ascending axons that project to the midbrain play a crucial role in hyperalgesia. To test this hypothesis the quantitative properties of lamina I spinoparabrachial neurons in the chronic constriction injury (CCI) model of neuropathic pain were compared to those of unoperated and sham-operated controls. Behavioural testing showed that animal...

متن کامل

The organisation of spinoparabrachial neurons in the mouse.

The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being use...

متن کامل

Quantitative characterization of low-threshold mechanoreceptor inputs to lamina I spinoparabrachial neurons in the rat

It has been suggested that primary afferent C-fibres that respond to innocuous tactile stimuli are important in the sensation of pleasurable touch. Although it is known that C-tactile fibres terminate in the substantia gelatinosa (lamina II) of the spinal cord, virtually all of the neurons in this region are interneurons, and currently it is not known how impulses in C-mechanoreceptors are tran...

متن کامل

Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat

Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are li...

متن کامل

Pain: new insights, new treatments?

THE ABILITY TO PERCEIVE PAIN and avoid further contact with noxious stimuli is important for survival. Pain originating in injured tissues (tissue damage, inflammation, etc.) is valuable because it limits use of the injured area and allows it to rest and heal. The plasticity of the nervous system is demonstrated under conditions of prolonged pain, which may be associated with sensitization. Min...

متن کامل

NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat.

Diffuse noxious inhibitory controls (DNIC) are very powerful long-lasting descending inhibitory controls, which are pivotal in modulating the activity of spinal and trigeminal nociceptive neurons. The principal feature of DNIC is that they are subserved by a loop that involves supraspinal structures that have not yet been identified. Using behavioral, in vivo extracellular electrophysiological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2000